Conjugacy in Normal Subgroups of Hyperbolic Groups
نویسندگان
چکیده
Let N be a finitely generated normal subgroup of a Gromov hyperbolic group G. We establish criteria for N to have solvable conjugacy problem and be conjugacy separable in terms of the corresponding properties of G/N . We show that the hyperbolic group from F. Haglund’s and D. Wise’s version of Rips’s construction is hereditarily conjugacy separable. We then use this construction to produce first examples of finitely generated and finitely presented conjugacy separable groups that contain non-(conjugacy separable) subgroups of finite index.
منابع مشابه
Nilpotent groups with three conjugacy classes of non-normal subgroups
Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. In this paper, all nilpotent groups $G$ with $nu(G)=3$ are classified.
متن کاملGroups with one conjugacy class of non-normal subgroups - a short proof
For a finite group $G$ let $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$. We give a short proof of a theorem of Brandl, which classifies finite groups with $nu(G)=1$.
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملConjugacy Classes of Solutions to Equations and Inequations over Hyperbolic Groups
We study conjugacy classes of solutions to systems of equations and inequations over torsion-free hyperbolic groups, and describe an algorithm to recognize whether or not there are finitely many conjugacy classes of solutions to such a system. The class of immutable subgroups of hyperbolic groups is introduced, which is fundamental to the study of equations in this context. We apply our results...
متن کاملMorse Theory and Conjugacy Classes of Finite Subgroups
We construct a CAT(0) group containing a finitely presented subgroup with infinitely many conjugacy classes of finiteorder elements. Unlike previous examples (which were based on right-angled Artin groups) our ambient CAT(0) group does not contain any rank 3 free abelian subgroups. We also construct examples of groups of type Fn inside mapping class groups, Aut(Fk), and Out(Fk) which have infin...
متن کامل